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The Finite Element Method in a Family of 
Improperly Posed Problems 

By Houde Han 

Abstract. The numerical solution of the Cauchy problem for elliptic equations is considered. 
We reformulate the original problem as a variational inequality problem, which we solve 
using the finite element method. Moreover, we prove the convergence of the approximate 
solution. 

Let GD be a bounded open set in the space R' and D6D be the boundary of G6. 
Then QT= GD x (0, T) is a bounded open set in R" 1. We discuss the following 
boundary value problem for the elliptic equation: 

n a( au a Iau\ 
LU-i ,, aI (i axi a +j at ( at)=? 

(I) UIloDx[O,T] = ? 

ul,o = f(x), 

au au| 
= g(x). at ,=0 

Here Aij, A are functions of x and, moreover, 
n 

P( 2 + 2 + *+2) < 2)itt P(l+4 
i,j= I 

VI > v > 0;A > No > 0. v, PI, X0 are constants. 
If there are no added restrictions to the solutions of (I), J. Hadamard [1] has 

pointed out that the solution of (I) is not continuously dependent on the Cauchy 
data. So problem (I) is an improperly posed problem. As the famous example of 
J. Hadamard has shown, it is impossible to solve this improperly posed problem by 
the classical theory of partial differential equations. But these types of problems 
arise naturally in many kinds of practical problems and therefore have required the 
attention of many mathematicians. First, M. M. Lavrentiev [2] has discussed 
bounded solutions of the Laplace equation in a special two-dimensional domain. 
These solutions are dependent on the Cauchy data continuously. After this L. E. 
Payne [3], [4] studied solutions of more general second-order elliptic equations, 
which are dependent on the Cauchy data continuously. Of course, it is necessary to 
add some restrictions to the domains and the solutions. In 1975 L. E. Payne 
outlined this problem in [5]. 
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In this paper we shall first discuss the solutions of problem (I) which are 
continuously dependent on Cauchy data in a set of solutions with bounded energy. 
Next we change this problem into a variational inequality problem. We shall give a 
method for solving this last problem by the finite element method. 

1. The Continuous Dependence of the Solutions of Problem (I) on the Cauchy 
Data. Let us define 

n au av au av ~d t ) 
a(u, v) -ax a + A- dx d, A(u) a(u, u). 4f axAax at at2 

Let us assume that u is the solution of problem (I) and that u satisfies 

(1.1) J(u) < M, 

where M > 0 is a constant. Now we consider the continuous dependence of u on f 
and g. 

We define 

El = 1IfII2 o(0) E2 = 11 gII2O(60) 

where HO(OD) is the Sobolev space on the n-dimensional domain 'T, and assume 

(1.2) E, + E2 < Mo 

where Mo is a constant. 
Consider the following functions, 

A 
JQJ= f ,E, Aii- -x X + A aXaa dx di, 

S2 ij= I d xi N, at at/ 

F(t) = fA(T) dT + k,El + k2E2, 

where Q2, = 6O x (0, t) and k1, k2 are constants to be determined. From F(t) we 
introduce the function 

t2 
(1.3) V(t) = ln F(t) + 2 

Independently of u, f, and g, we may choose k, and k2 sufficiently large to get 

(1.4) F2 2 > ?, ? < I < T 

The detailed computation is omitted here. A similar computation can be found in 

151. 
Thus V is a convex function of t on [0, T]. For every t E [0, T], we have 

(1.5) V(t) S V(O) T- + V(T) T. 

From (1.5), we obtain the following theorem. 

THEOREM 1.1. Let us assume that Aij, X are functions of the variable x only. Then 
rhe solutions u of problem (I), which satisfy (1.1) depend continuously on the Cauchy 
data, and we have the estimates 

(1.6) f u2(X, t) dx < Hl(klEl + k2E2)(T t)/T, 0 < t S T, 

where Hi is a constant given in the following proof. 
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Proof. Substituting (1.3) into (1.5), we obtain 

InF() 2 < I in F(O) + In F(T) + T 
2n()~ T- +(nT 2/ 

namely, 

F(t)e'/ < F(O)(Tt/ F( T) /et/ 

Therefore, 

F(t) < e(T 
- 

) 1/2F(0) (T -')ITF(T Iv/T. 

As F(O) = k1E1 + k2E2, 

F(T) < MT + k1EI + k2E2 < MT + MO(k, + k2), 

then 

F(t) S H1(K1El + K2E2)(T 1)/ T. 

Here Hi is a constant, which depends only on MO, M, Ai , A and T. But it may have 
different numerical values at different places in what follows. 

On the other hand, we know 

F(t) > {Xu2 dx > o fu2 dx, 

so we obtain 

fu2 dx S HI(KIEI + K2E2)(T t)/T 

which is (1.6). 
Moreover, by integrating the above expression from 0 to T, we get 

~ 2 dX< Hi 
f f 

T jIln[(KIEI + K E 

where Ki El + K2E2 # 1, of course. 

2. A Variational Inequality. Since Cauchy data are obtained by measuring, we 
can only get approximations fl, g, of f, g. How do we find the approximate solution 
of problem (I) fromf1, gl? In this section, we give an answer to this question. 

We first consider the following problem. 

UIa0Dx[o,TI = 0, 

u(x, 0) - fl(X) Ifo(OD) < al, 

(2.1) aU(x, 0) - g1(x) < a2, 
at HOO 

J(u) = inf J(v), 

where a,, a2 > 0, are upper bounds of the errors in the measurements, namely, 

(2.2) If f hfl IIH (D) < a1, 

II - gIIIHO(OD) < a2. 
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Let us assume that u- is a solution of problem (2.1). If u- satisfies the differential 
equation in problem (I), then we know u- is an approximate solution of problem (I) 
from Theorem 1.1. (Of course, the solution of problem (I) must exist. Let us denote 
it by u.) Moreover, we have 

f[u(x, t) -i(x, t)]2 dx 2 H1(K1al + K2)(T-t)/ T, 

In order to find an approximate solution of problem (I), we will solve problem 
(2.1). Problem (2.1) is a minimum problem of functional J(v) on a convex set. To 

discuss the solvability, we introduce the space H (00) 
Let us define 

C* (QT)= {Tvlv E C (QT)I support of v in 6D x [0, T]}. 
Using the norm 

H'~2T 
2 

v~f)+IIV(X, O)112,I(0 + -y(x 0) 1V1 Ih1(1T) 11VIIH1(51T) + IH&oD) at (X 0)11 
D, 

we complete the space C (T) to obtain a new space denoted by H (UT). Here 
H '(QT) is the usual Sobolev space on UT' 

We consider a subset of H (UT), 

at 2)~~ 
{vlv | H(QT); IIV(X, 0) - flII2iIo) 6 2|| aV(X, 0) - g 2 <a 21 

Obviously, K is a closed convex set in H (UT). If the solution of problem (I) exists, 
then K is not empty. So problem (2.1) is equivalent to a variational problem: 

(2.3) J(iu) = inf J(v). 
vEK 

For the variational problem (2.3), we have 

LEMMA 2.1. The variational problem (2.3) and the following variational inequality 
(2.4) are equivalent, 

(2.4) a(u-,v-u-)>O VvEK. 

LEMMA 2.2. The solution of problem (2.4) is unique. 

The proof of Lemma 2.1 and Lemma 2.2 can be found in [6]. 
From Lemmas 2.1, 2.2 we also know that the solution of (2.3) is unique. 

LEMMA 2.3. If K is not empty, the solution of (2.3) exists. 

Proof. Since the functional J(v) is nonnegative, we have 

a = Inf J(v) > 0. 
v E K 

Thus there exists a minimization sequence un E K, namely, 

J(un) a, n o, un E K. 
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We know that the bilinear form a(u, u) is not coercive and that K is not bounded, 
but J(un) is bounded. On the other hand, as un E K, then 

11UnXI 0 11H0-D)I 
au",(x, 0) IIun(X, O)II H0(e || a't HO(cD 

are bounded. 

Therefore we know un is a bounded sequence in the space H(QT). We can 
extract a subsequence unK so that it will converge to u- weakly. As K is a closed 
convex set, K is also a closed set in the weak topology. Thus a Ee K. On the other 
hand, J(v) is a convex functional and J(v) is lower semicontinuous [6]. We have 

limkoo J(unK) > J(iu). From this we obtain J(u-) = a. Hence ui is a solution of (2.4). 
From Lemma 2.1 we know u- is a solution of (2.3). 

LEMMA 2.4. Let us assume Ai;, A E C1'(QT). Then the solution of problem (2.3) 
U E C2(QiT) satisfies the differential equation 

Lu- = 0. 

Proof. Let us denote an arbitrary function in the space CON(OT) by w (namely, 
w E CO(UT) and the support of w is in QT). 

Let us define 
v+ = u + wI v- -=u - w, 

then v+, v E K. As u- is the solution of (2.4), we obtain 

a( u, v +- u ) > O, a ( u, v u-u) > O. 

Namely 

a(ui, w) > O, -a(ui, w) > 0. 

Thus we have 
a(ui, w) = 0. 

Let us denote an arbitrary element of the Sobolev space H '(QT) by wo. Then for wo 
we have a sequence wn E Co' (QT) (n = 1, 2.... ) and {wn} converges to wo in 
H '(UT). For every wn, we have 

a(ui, wn) = 0. 

As n -- + x, we obtain 

a(u-, w) = , w c H (T)- 

From this we know that u- is a generalized solution of the following Dinrchlet 
problem 

Lu- = 0, 
(2.5) u = u 

As the generalized solution of (2.5) is unique and smooth in UT, we obtain 
uE C2(T). From this, we have 

THEOREM 2.1. u-, the solution of (2.3), is an approximate solution of problem (I) and 
we have the estimate 

f[ u(x, t) -u(x, t) ]2 dx < HI(Kla+ K2a2 

where u(x, t) is the solution of problem (I). 
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3. The Approximate Solution of (2.3) in the Finite Element Method. In this 
section we consider the approximate solution of (2.3) in the finite element method. 
We divide QT as follows: at first [0, T] is divided into N equal parts by 

T iT 
_ ~ ~~O = N-- ti = _b . bt tN= T. 

So QT is divided into N layers; the shape of every layer being identical. Next every 
layer is divided into many elements and the way of dividing every layer is 
completely identical. When choosing proper displacement functions, we can obtain 

a finite-dimensional subspace of H (QT). For instance, every layer is divided into 
simplices (when n = 1, a simplex is a triangle), and we choose the displacement 
functions so that they are continuous on QT and linear functions of (x, t) on every 

element. From this we obtain a subspace of H (UT). Let us denote it by Sh (where 
h is the longest length of the sides of simplices). Of course, the angles of the 
simplices require some restrictions for convergence of the finite element method. 

Now we simplify the problem (2.3) on the finite-dimensional space Sh. 
Let us define the set 

Kh = {vhIVh E Sh, IIVh(X, 0) - fIIHo(D) s a1, 

aVh(X, 0) - gl(x) < a2) 

Obviously, Kh is a closed convex set in sh. If Kh is not empty, instead of problem 
(2.3) we consider the minimum of the functional J(vh) on the closed convex set Kh. 

(3.1) J(juh) = inf J(vh). 
vh GEK 

Let us assume that the number of internal nodes of every node layer is m. For 
arbitrary vh E Kh, we denote the displacements of vh on the internal nodes of the 

ith node layer by vil, vi2, . .. , vim; i = 0, 1, ..., N. (As vhIa6DXo,T] = 0, the values 
of vh on the boundary nodes are zero.) 

FIGURE I 
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Let us define Yi = (vil, v7, . . , vi1)', which is an m-dimensional column vector. 
Because of the way we divided QT and because Aij, X are independent of t, the 
stiffness matrix of every element-layer is the same. Let us denote it by 

( K1 -Al 
-AI K 

which is a 2m-order nonnegative symmetry matrix. From this we have 
n K - 

J(v h) yiT ( IYyi I Yi K 

In this case, J(vh) is a quadratic form of Yo . . ., YN. Because vh(x, 0) is 
dependent only on the vector YO and aVh(x, 0)/at is dependent only on the vector 
YO, Y1, let us define 

2~ ~ Y 
IIvh(x, 0) -flII2fIo() = F(Y0), a|h(, 0) -t = G(Y0, Y,), 

where F( YO) is a quadratic function of the node displacements, YOL, Y0..., YOM, 
and G( YO, Y1) is a quadratic function of the node displacement, YOL, Y.... I, YOM, 
y1I y2 ym 

I mI . . I. 

So problem (3.1) becomes the minimum problem of the quadratic form 
J(Yo,..., YN) under the following restrictions: 

F( YO) < al2 G( Yo, YI) < a2'. 

Namely, 

(3.2) J( '- Y , YN)= min J(YO, Y1,., YN,). 
F( Y0) < al 

This is a convex programming problem. The solution of (3.2) exists and is unique. 
There is a great number of variables in this problem. Now we shall eliminate all the 
variables except the first two and the last one. 

If Yo, Y1, . . ., YN is the solution of (3.2), then we know that Y2, Y3, . . ., YN-I 
satisfies the following equations: 

(3.3) -AI Yi 1- + (KI + K;) Yi-A AfYT+I = 0, i=2,3,...,N- 1. 

From (3.3) we obtain Yi (i = 2, 3, . . . , N - 1) represented by the vectors Y1, YN, 

and we can get the stiffness matrix of the N - I element-layers (from 2nd 
element-layer to Nth element-layer). Namely, 

IN K1 - i KN -A T Y( 
_ i(IT yT)( I l) I I y =_lT yNT)( N-1 N-1 ( ) 

2 i i 
A K 2 1 

-A K~ i=2 I I yi N-1 ~~~~~~~-1J~ )N 
Here KN- 1, KN- 1, AN- I are given by the following iterative formulas (see [7]): 

Ki = K - A7i(KI + Ki l) Ai-l 

Ki' = K -A l(K1 + K,' )IA T , i =2,3,..., N- 1. 

Ai =-AI(KI + K.'-)'Ai-J 
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If N - I = 2k, where k is a positive integer, then we can use the iterative 
formulas (5) in [7]. We actually need to iterate k times to get KN-I, KN- and 
AN- 1. Therefore, instead of (3.3) we obtain a convex programming problem, 

(3.4) J*(YO, YP YN)= min J*(YO, Y1l YN)' 
F( Y0) <aI 

G(Y0 Yl) <a2 

where 

J*(YO YI, YN) = 2-(Y? YT)( A _A )K( Y1) 

2 ( l YN AN - I K' I) YNJ 

To solve problem (3.1) we may now proceed as follows: First, we solve a convex 
programming problem (3.4) with fewer variables to obtain the vectors YO, Y, and 
Y,,. Then we get Y2, Y3, . .., YN-I from the linear equations (3.3). Finally, from 
these we obtain the solution ui of our problem (3.1). 

4. Convergence of the Approximate Solution in the Finite Element Method. In the 
last section, the given subdivision satisfies the following conditions: 

(1) Sh is a finite-dimensional subspace of H (QT). 

(2) Kh is a closed convex subset of K, and Kh is not empty. 
If a subdivision satisfies the above conditions (1) and (2), we call it conforming. 

When the subdivision is made finer by taking smaller hi's, we get a space sequence 
S" (i = 1, 2.... ) and a set sequence K'. If for the arbitrary function v E K, we 
can find a functional sequence 

{v^'1v' E K'} and liv - III(T)-O (i -mc,), 

then we say this subdivision sequence satisfies the basic condition A. If there is a 
function vo E K and 

I VO - flII HO(D) < a,, avt - 1 < a2, at - Ho('D) 

it is easy to prove that the subdivision sequence in the last section satisfies the basic 
condition A. As before it is clear that the angles of the simplices require some 
restrictions. 

For every St and K', we get the solution uh of (3.1), respectively, because both 
S'" and Kh are conforming. To prove the convergence of uh,, we first prove the 
following lemmas. 

LEMMA 4. 1. If { S '}, f K'} satisfy the basic condition A, then the t u hi} is a 

bounded sequence in the space H (QT). 

Proof. As K is not empty, we have a vo E K. From the basic condition A, there is 
a functional sequence {v;}, v' E K', and Ilvo - v&hI I (a,) 0, when i oo. 

Therefore, 



THE FINITE ELEMENT METHOD 63 

As u1" is the solution of (3.1), then 

J(uh,) 0 J(v) ' V 
1;v'1 12. 

c2(1 V iNOT) + VIIv 
- v <II()) C2(IIVOIII(0 ) + Cl) 

2 

where C,, C2 are two constants. On the other hand, we know that 

IIU1241(0T) < C3J(uk-) 

and u Ee K4, C3 > 0 is a constant. It follows that IIUNZI4;I(uT) is bounded. 

LEMMA 4.2. We can extract a subsequence {u'-j) from { u'0. This subsequence 
converges weakly to u-, the solution of (2.4). 

Proof. From the result of Lemma 4.1, we know that { u k } is a bounded sequence 

in H (UT). Thus we can extract a subsequence { u"i}, which converges in H (QT) 

weakly. Let us denote the limit of this subsequence of u-. Now we prove that ui is the 
solution of (2.4). We know that K is a closed convex set, thus it is weakly closed, 
namely the limit u- E K. On the other hand, as the basic condition A is satisfied, 
there is a sequence {v'i}, v1"j E K"- for arbitrary v E K and 

liv - V?JIIHI(0))O (i -?). 

For u1j, v'j we have 

a( u"j, v u 4-) > 0, 

namely, 

a(u';--, v';j) > a(u;-j, u4j). 

From 

lim a(u"J, v"ji) = a(iu, v), lim a(uki, u"i) > a(u-, u-), 

we get 

a(u-, v) > a(u-, u) Vv E K. 

Namely, 

a(u-, v-u-) > O Vv E K. 

From this we know that u- is the solution of (2.4). 

LEMMA 4.3. u -i is convergent to ii in the strong topology in the Sobolev space 
H 1(QT). 

Proof. First we point out that a(u, u) satisfies 

2 23U H (UT) < a(u, u) < 2C211HuII("T) u E H T) 

On the other hand, as u- E K, there is a sequence {v'4Iv E K&) and 
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Therefore, we have 

a(ui - uhi, U - uh'') = a(u - U'J, Ui - Vi) + a(u - u1, v0 - u ) 

= a(u - h0i, U - V'J) + a(u, v"' - u - a(u'4 , v'}u - /;J) 

< a(iu -u 'i, U -vk'i) + a(ui, v"' - u;}) 
= a(u- - Ui, U- -v 'k) + a(u, v'J - u) = a(Uu, ui -u 

< a(u -u 0, U -V'i) + a(u, V*'' - U-) 

< yI I u U' JIIH(IW)OIU VkJIIHI(QT) + Ylllu V kjIIHI(QT) 

(where y is a positive constant, yl = Y1 1i H'(Q)) 

4C ||u 
-uIIH1(UT) + C3y u -v-YIHII(UT) 

+ yl|u -V'jllHI(OT). 

Thus we obtain 

11 - - h,.jII2 4 3{C3- | 2 V11 
- - (QT) HI U~~f(UT) < 4C3{CyHI102TJI~~) + ylll -VkJIIHI(QT)}. 

Namely, we have 

lim 1II u-u _H 2 , = 0. 

Now we have the following convergence theorem. 

THEOREM 4.1. If the sequences { S h,} and { Khi} are conforming and satisfy the basic 
condition A, then the complete sequence u1' converges to ui in H '(QT). 

Proof. We will prove this by contradiction. If {u'} does not converge to iu, then 
there exists a positive constant c0 > 0 and a subsequence u 'K, which satisfies 

II uK - UIIHI(Ul) > Co. 

Now we consider the sequence ({uK}. From Lemmas 4.2, 4.3 we know that we 
can extract a new subsequence from { u k *. This new subsequence converges to the 
solution of (2.4) in the Sobolev space H I(QT). As the uniqueness of (2.4), we obtain 
a contradiction. So Theorem 4.1 is proved. 

The author thanks Professor Hsin Chu and Professor Lorenzo Lara-Carrero for 
their help with the English composition of this paper. 
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